RADCOR 2000, Carmel, Sept. 11-15, 2000



S. Bertolini INFN and SISSA - Trieste

- The  $\Delta I = 1/2$  selection rule and  $\varepsilon'/\varepsilon$
- Going beyond factorization: FSI and more.
- 1/N, lattice, phenomenological models
- Hadronic matrix elements: a comparative discussion
- Conclusions

## **POST-DICTIONS**

(After February 1999)





## PRE-DICTIONS (Before February 1999)



Theoretical Predictions

| NA31: | $(23 \pm 6.5) \times 10^{-4}$  |
|-------|--------------------------------|
| E731: | $(7.4 \pm 6.0) \times 10^{-4}$ |

Two body Final State Interactions (FSI)

 $K \to (\pi \pi)_{I=0}$  FSI attractive  $(\delta_0 > 0) \Rightarrow$  enhanced  $K \to (\pi \pi)_{I=2}$  FSI repulsive  $(\delta_2 < 0) \Rightarrow$  depleted [Fermi (1955)]

Qualitatively one should expect  $\varepsilon'/\varepsilon$  larger than that produced by leading 1/N (factorization).

Dispersion relation [Mushkelishvili (1953), Omnes (1958)]:

$$M(s+i\epsilon) = P(s) \exp\left(\frac{1}{\pi}\int_{4m_{\pi}^2}^{\infty} \frac{\delta(s')}{s'-s-i\epsilon}ds'\right)$$

where P(s) is related to the factorization amplitude.

Solve as: 
$$A_I(s) = A_I'(s - m_\pi^2) R_I(s) e^{i\delta_I(s)}$$

Recent studies give  $R_{0,2}(m_k^2) = 1.4$ , 0.9. [Pich and Pallante, (1999)].

Ambiguities in the determination of the derivative of the factorization amplitude  $A'_I(s = m_\pi^2)$ , using LO chiral perturbation theory [A.J. Buras et al. (2000)]. However, the lower is the subtraction point the smaller are higher order chiral corrections !

The I=0 enhancement may be quantitatively enough for  $\varepsilon'/\varepsilon$  , but is that all ?

Cooking up  $\varepsilon'/\varepsilon$  : Recipe and Ingredients

$$CP | |K^0\rangle = |\bar{K}^0\rangle$$

$$K_1 = (K^0 + \overline{K}^0)/\sqrt{2}$$
 CP even  $\rightarrow \pi\pi$   
 $K_2 = (K^0 - \overline{K}^0)/\sqrt{2}$  CP odd  $\rightarrow \pi\pi\pi$ 

$$K_S = (K_1 + \varepsilon K_2) / \sqrt{1 + |\varepsilon|^2}$$
$$K_L = (K_2 + \varepsilon K_1) / \sqrt{1 + |\varepsilon|^2}$$

$$\varepsilon = \frac{\langle (\pi\pi)_{I=0} | \mathcal{H}_W | \mathbf{K}_L \rangle}{\langle (\pi\pi)_{I=0} | \mathcal{H}_W | \mathbf{K}_S \rangle},$$

$$\frac{\varepsilon'}{\varepsilon} = \frac{1}{\sqrt{2}} \left\{ \frac{\langle (\pi\pi)_{I=2} | \mathcal{H}_W | \mathbf{K}_L \rangle}{\langle (\pi\pi)_{I=0} | \mathcal{H}_W | \mathbf{K}_L \rangle} - \frac{\langle (\pi\pi)_{I=2} | \mathcal{H}_W | \mathbf{K}_S \rangle}{\langle (\pi\pi)_{I=0} | \mathcal{H}_W | \mathbf{K}_S \rangle} \right\}$$

The  $\Delta I = 1/2$  selection rule in  $K \rightarrow (\pi \pi)_{I=0,2}$  decays (Gell-Mann and Pais, 1954):

$$\omega \equiv |\mathcal{A}_2|/|\mathcal{A}_0| = 1/22.2$$

Write the I = 0, 2 amplitudes (Watson, 1952):  $\mathcal{A}_I(K \to \pi\pi) = A_I \exp i(\delta_I)$  $\delta_I$ : Final State Interaction Phase

From  $\pi$ - $\pi$  S-wave scattering lenght (Chell and Olsson, 1993):

 $\begin{array}{rcl} \delta_0 &\simeq& 34.2^0 \pm 2.2^0 & \cos \delta_0 &\simeq& 0.8 \\ \delta_2 &\simeq& -6.9^0 \pm 0.2^0, & \cos \delta_2 &\simeq& 1.0 \end{array}$ 

The rescaling of the "factorized" amplitudes due to FSI does not explain alone the selection rule. Other non-factorizable contributions are needed: are the latter corrections specific to CP-conserving transitions only?

Reproducing the  $\Delta I=1/2$  selection rule is a pre-requirement for any calculation of  $\varepsilon'/\varepsilon$  .

(H)OPE: the Effective Lagrangian

$$\mathcal{L}_{\Delta S=1} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_i [z_i(\mu) + \tau \ y_i(\mu)] Q_i(\mu)$$

 $\tau = -V_{td}V_{ts}^*/V_{ud}V_{us}^*$ 

For 
$$\mu < m_c$$
  $(q = u, d, s)$ :

"Penguins" feel all three quark families in the loop: they are sensitive to the CP phase.

## CP conserving

 $\operatorname{Re}A_{0} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \frac{1}{\cos \delta_{0}} \sum_{i} z_{i} \operatorname{Re} \langle Q_{i} \rangle_{0}$  $\operatorname{Re}A_{2} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \frac{1}{\cos \delta_{2}} \sum_{i} z_{i} \operatorname{Re} \langle Q_{i} \rangle_{2}$  $+ \omega \Omega_{\eta+\eta'} \operatorname{Re}A_{0}$ 

## CP violating

$$ImA_{0} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \frac{1}{\cos \delta_{0}} \sum_{i} Im\tau \ y_{i} \operatorname{Re} \langle Q_{i} \rangle_{0}$$
$$ImA_{2} = \frac{G_{F}}{\sqrt{2}} V_{ud} V_{us} \frac{1}{\cos \delta_{2}} \sum_{i} Im\tau \ y_{i} \operatorname{Re} \langle Q_{i} \rangle_{2}$$
$$+ \omega \ \Omega_{\eta+\eta'} \operatorname{Im}A_{0}$$

Isospin breaking  $\pi^0 - \eta - \eta'$  mixing (NLO):

$$\Omega^{\pi-\eta-\eta'}_{
m IB}\simeq 0.16\pm 0.05$$

[Ecker, Müller, Neufeld and Pich, 1999]

Complete NLO chiral corrections may make  $\Omega_{IB}^{NLO}$  as large as -0.7 [Gardner and Valencia, 1999]

Computing Direct CP violation in  $K \to \pi\pi$ 

$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | \mathcal{H}_W | K_L \rangle}{\langle \pi^0 \pi^0 | \mathcal{H}_W | K_S \rangle} \simeq \varepsilon - 2\varepsilon'$$

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | \mathcal{H}_W | K_L \rangle}{\langle \pi^+ \pi^- | \mathcal{H}_W | K_S \rangle} \simeq \varepsilon + \varepsilon'$$

Using the effective  $\Delta S = 1$  quark lagrangian:

$$\frac{\varepsilon'}{\varepsilon} = e^{i\phi} \frac{G_F \omega}{2|\epsilon| \operatorname{Re} A_0} \operatorname{Im} \lambda_t \left[ \Pi_0 - \frac{1}{\omega} \Pi_2 \right]$$

$$\Pi_{0} = \frac{1}{\cos \delta_{0}} \sum_{i} y_{i} \operatorname{Re} \langle Q_{i} \rangle_{0} (1 - \Omega_{\eta + \eta'})$$
  
$$\Pi_{2} = \frac{1}{\cos \delta_{2}} \sum_{i} y_{i} \operatorname{Re} \langle Q_{i} \rangle_{2}$$

$$\phi = \frac{\pi}{2} + \delta_2 - \delta_0 - \theta_\varepsilon = (0 \pm 4)^0$$

9

# $\mathrm{Im}\lambda_t\simeq\eta~|V_{us}||V_{cb}|^2$



Thanks to F. Parodi, 1999

$$\widehat{B}_K = 1.0 \pm 0.2$$
: Im  $\lambda_t = (1.21 \pm 0.12) \times 10^{-4}$ 

Munich:  

$$\hat{B}_K = 0.80 \pm 0.15$$
: Im  $\lambda_t = (1.33 \pm 0.14) \times 10^{-4}$ 

# Calculation of four-quark matrix elements

### The ideal approach

- A: Consistent definition of renormalized operators: correct scheme and scale matching with short-distance.
- B: Self-contained calculation of all hadronic matrix elements (including  $B_K$ ).
- C: It reproduces simultaneously the  $\Delta I=1/2$  selection rule and  $\varepsilon'/\varepsilon$  .

$$\begin{array}{lll} \mathsf{VSA:} & \langle \pi^+\pi^- | Q_6 | K^0 \rangle & = & 2 \langle \pi^- | \overline{u} \gamma_5 d | 0 \rangle \langle \pi^+ | \overline{s} u | K^0 \rangle \\ & - & 2 \langle \pi^+\pi^- | \overline{d} d | 0 \rangle \langle 0 | \overline{s} \gamma_5 d | K^0 \rangle \\ & + & 2 \left[ \langle 0 | \overline{s} s | 0 \rangle - \langle 0 | \overline{d} d | 0 \rangle \right] \langle \pi^+\pi^- | \overline{s} \gamma_5 d | K^0 \rangle \end{array}$$

Generalized Factorization: Effective Wilson coefficients, matched with factorized matrix elements at the scale  $\mu_F$  (H-Y Cheng, 1999).

Phenomenological 1/N: Fix some of the matrix elements by fitting the  $\Delta I = 1/2$  rule and vary others around the 1/N values (München).

Chiral Quark Model: All matrix elements at  $O(p^4)$  in terms of  $\langle \bar{q}q \rangle$ ,  $\langle \frac{\alpha_s}{\pi} GG \rangle$ , M, phenomenologically fixed via the  $\Delta I = 1/2$  rule (Trieste).

Phenomenological NJL: Chiral loops up to  $O(p^6)$  and fit to the  $\Delta I = 1/2$  rule. It includes scalar, vector and axial-vector resonances (Dubna).

1/N: Chiral loops regularized via cutoff, partial  $O(p^4)$  (Dort-mund).

1/N and NJL: It includes scalar, vector and axial-vector resonances, good scale stability (Bijnens and Prades, 1999-2000).

1/N and QCD Sum Rules:  $\hat{B}_K$  at the NLO in 1/N in the chiral limit: consistent NLO matching (Peris and De Rafael, 2000).

Lattice:  $K \to \pi$  matrix elements of four-quark operators. Use chiral symmetry to obtain  $K \to \pi\pi$  (Roma, RBC).

Linear  $\sigma$ -model:  $m_{\sigma} = 500 - 900$  MeV:  $\varepsilon'/\varepsilon$  and  $A_0$  cannot be reproduced simultaneously (Keum et al., Harada et al., Bloch et al., 1999).

Cut-off people: beware of dimension eight operators!

$$\langle \mathcal{Q}_n^{(6)} \rangle_{\mu}^{\overline{\mathsf{MS}}} = \langle \mathcal{Q}_n^{(6)} \rangle_{\mu}^{\mathsf{cut-off}} + \sum_i d_i \langle \mathcal{Q}_i^{(6)} \rangle_{\mu} + \sum_i \mathcal{C}_i^{(8)} \langle O_i^{(8)} \rangle$$

[Cirigliano, Donoghue and Golowich, 2000]

#### Isospin violation: $\Delta I = 5/2$ transitions

$$\epsilon' = -\frac{i}{\sqrt{2}} e^{i(\chi_2 - \chi_0)} \omega \frac{\mathcal{I}mA_0}{\mathcal{R}eA_0} \left[ 1 - \frac{1}{\omega} \frac{\mathcal{I}mA_2}{\mathcal{I}mA_0} + (\Delta \omega_{5/2} - \Omega_{\rm IB})^{\rm EM+STR} \right]$$

[STR: Gardner and Valencia; Ecker et al.; Maltman and Wolfe. EM: Cirigliano, Donoghue and Golowich, 1999-2000]

### Compute $K \to \pi\pi$ directly on the lattice

In finite volume a simple formula relates the transition amplitude to the physical decay rate. It overcomes the Maiani-Testa *no-go theorem* (1990).

[Lellouch and Lüscher, 2000]

Is final state dynamics accounted for in quenched calculations ?

 $\varepsilon'/\varepsilon$ : a (Penguin) Comparative Anatomy



- $\left\langle Q_{9,10} \right\rangle_2 = \frac{3}{2} \left\langle Q_1 \right\rangle_2$  : from  $\Delta I = 1/2$  rule
- $\langle Q_8 \rangle_2$  moderately smaller than VSA
- Largest deviations:  $\langle Q_6 \rangle$  and  $\langle Q_4 \rangle$  !

![](_page_14_Picture_0.jpeg)

Anatomy of the  $\Delta I=1/2$  rule in the  $\chi {\rm QM}$ 

![](_page_14_Figure_2.jpeg)

 $\rightarrow$  4: Perturbative QCD and factorization  $\rightarrow$  5: Non-factorizable  $\langle \alpha_s GG/\pi \rangle$  corrections (LO)  $\rightarrow$  7: Chiral loops and  $O(p^4)$  counterterms  $\rightarrow$  8: Isospin breaking  $(\pi - \eta - \eta')$ 

Final state interactions alone are not enough to account for the  $\Delta I = 1/2$  rule. Penguins and  $\Delta I = 1/2$  rule in the  $\chi$ QM

![](_page_15_Figure_1.jpeg)

The  $Q_6$  contribution to  $A(K \to \pi\pi)_{I=0}$  (in GeV  $\times 10^7$ ) is about 20% of the total  $[O(p^4/N)]$ .

 $A_2$  is reduced to its experimental value by non-factorizable  $\langle GG \rangle$  corrections  $[O(p^2/N)]$ .

How does this information feed into the determination of the whole set of  $\Delta S = 1$  (and 2) matrix elements ?

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

At  $O(p^2)$  the pattern of hadronic matrix elements does not differ much from leading order 1/N.

Chiral corrections enhance  $\langle Q \rangle_{I=0} / \langle Q \rangle_{I=2}$ :  $B_6/B_8^{(2)} \approx 2$  (non-trivial consequence of the  $\Delta I = 1/2$  fit)

1/N approaches beyond LO (Dortmund group, Bijnens and Prades) confirm the  $\langle Q_6\rangle$  enhancement.

Role of NLO order chiral corrections and unquenching in lattice calculations ?

![](_page_17_Picture_0.jpeg)

- I = 2 amplitudes: (semi-)phenomenological approaches which fit the  $\Delta I = 1/2$  selection rule in  $K \to \pi\pi$  decays, generally agree in the pattern and size of the  $\Delta S = 1$  hadronic matrix elements with the existing 1/N and lattice calculations.
- I = 0 amplitudes: the  $\Delta I = 1/2$  rule forces upon us large deviations from factorization: B-factors of O(10) for  $\langle Q_{1,2} \rangle_0$  (lattice calculations presently suffer from large sistematic uncertainties).
- In the  $\chi$ QM calculation, non-factorizable contributions, "normalized" by the fit of the CP conserving amplitudes, enhance the I = 0 matrix elements and deplete the I = 2 amplitudes. such that  $B_6/B_8^{(2)} \approx 2$ . Similar results from 1/N and dispersive approaches. FSI are most relevant for the enhancement of the I = 0 components (gluonic penguins).
- Lattice: promising work in progress
  - Domain Wall Fermions (control of chiral symmetry),
  - Direct calculation of  $K \rightarrow \pi \pi$  in finite volume.
- Theoretical error: further work needed on
  - the matching of long-distance and short-distance components (cut-off reg.  $\rightarrow$  higher dim. operators).
  - the calculation of NLO isospin violation effects (EM + STR)
  - the determination of  $\text{Im}(V_{ts}^*V_{td})$ . From B-physics : B-factories and hadronic colliders (soon). From K-physics :  $K_L \rightarrow \pi^0 \nu \bar{\nu}$  (eventually).

Experiments have stimulated very promising theoretical efforts which may lead us in a reasonably short time to address longstanding problems of strong interacting QCD.