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Theory of "
0="

S. Bertolini
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� The �I = 1=2 selection rule and "0="

� Going beyond factorization: FSI and more.

� 1=N , lattice, phenomenological models

� Hadronic matrix elements: a comparative discus-

sion

� Conclusions
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PRE-DICTIONS

(Before February 1999)

Theoretical Predictions

-1

0

1

2

3

4

ε′/
ε

Muenchen

(1996)

Roma

(1997)

Trieste

(1997)

VSA

HV NDR

NA31

E731

NA31: (23� 6:5)� 10�4

E731: (7:4� 6:0)� 10�4

3



Two body Final State Interactions (FSI)

K ! (��)I=0 FSI attractive (Æ0 > 0) ) enhanced

K ! (��)I=2 FSI repulsive (Æ2 < 0) ) depleted

[Fermi (1955)]

Qualitatively one should expect "0=" larger than that pro-

duced by leading 1=N (factorization).

Dispersion relation [Mushkelishvili (1953), Omnes (1958)]:

M(s+ i�) = P(s) exp
�
1
�

R
1

4m2

�

Æ(s0)

s0�s�i�
ds0
�

where P(s) is related to the factorization amplitude.

Solve as: AI(s) = A0I (s�m2
�) RI(s) e

iÆI(s)

Recent studies give R0;2(m
2
k) = 1:4; 0:9.

[Pich and Pallante, (1999)].

Ambiguities in the determination of the derivative of

the factorization amplitude A0I(s= m2
�), using LO chiral

perturbation theory [A.J. Buras et al. (2000)]. However,

the lower is the subtraction point the smaller are higher

order chiral corrections !

The I = 0 enhancement may be quantitatively enough
for "0=" , but is that all ?
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Cooking up "
0
=" : Recipe and Ingredients

CP jK0i = j �K0i

K1 = (K0+ �K0)=
p
2 CP even ! ��

K2 = (K0 � �K0)=
p
2 CP odd ! ���

KS = (K1+ "K2)=

q
1+ j"j2

KL = (K2+ "K1)=

q
1+ j"j2

" =
h(��)I=0jHW jKLi
h(��)I=0jHW jKSi ;

"0
" = 1p

2

�
h(��)I=2jHW jKLi
h(��)I=0jHW jKLi

� h(��)I=2jHW jKSi
h(��)I=0jHW jKSi

�
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The �I = 1=2 selection rule in K ! (��)I=0;2

decays (Gell-Mann and Pais, 1954):

! � jA2j=jA0j = 1=22:2

Write the I = 0;2 amplitudes (Watson, 1952):

AI(K ! ��) = AI exp i (ÆI)

ÆI: Final State Interaction Phase

From �-� S-wave scattering lenght (Chell and Olsson, 1993):

Æ0 ' 34:20 � 2:20

Æ2 ' �6:90 � 0:20;

cos Æ0 ' 0:8
cos Æ2 ' 1:0

The rescaling of the \factorized" amplitudes due to FSI

does not explain alone the selection rule. Other non-

factorizable contributions are needed: are the latter cor-

rections speci�c to CP-conserving transitions only?

Reproducing the �I = 1=2 selection rule is a

pre-requirement for any calculation of "0=" .
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(H)OPE: the E�ective Lagrangian

L�S=1 = �GFp
2
Vud V

�
us
P
i[zi(�) + � yi(�)]Qi(�)

� = �VtdV �
ts=VudV

�
us

For � < mc (q = u; d; s):

Q1 =
�
s�u�

�
V�A

�
u�d�

�
V�A

Q2 = (su)V�A (ud)V�A

)
Current-Current

Q3;5 = (sd)V�A
P

q (qq)V�A

Q4;6 =
�
s�d�

�
V�A

P
q(q�q�)V�A

)
Gluon \penguins"

Q7;9 = 3

2
(sd)V�A

P
q êq (qq)V�A

Q8;10 = 3
2

�
s�d�

�
V�A

P
q êq(q�q�)V�A

)
Electroweak \penguins"

\Penguins" feel all three quark families in the loop:

they are sensitive to the CP phase.
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CP conserving

ReA0 =
GFp
2
Vud Vus

1
cos Æ0

P
i zi Re hQii0

ReA2 =
GFp
2
Vud Vus

1
cos Æ2

P
i zi Re hQii2

+ ! 
�+�0 ReA0

CP violating

ImA0 =
GFp
2
Vud Vus

1
cos Æ0

P
i Im� yi Re hQii0

ImA2 =
GFp
2
Vud Vus

1
cos Æ2

P
i Im� yi Re hQii2

+ ! 
�+�0 ImA0

Isospin breaking �0 � � � �0 mixing (NLO):



�����0

IB ' 0:16� 0:05

[Ecker,M�uller,Neufeld and Pich, 1999]

Complete NLO chiral corrections may make 
NLO
IB as

large as �0:7 [Gardner and Valencia, 1999]
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Computing Direct CP violation in K ! ��

�00 �
h�0�0jHW jKLi
h�0�0jHW jKSi

' "� 2"0

�+� �
h�+��jHW jKLi
h�+��jHW jKSi

' "+ "
0

Using the e�ective �S = 1 quark lagrangian:

"0
"
= e

i� GF!

2j�jReA0
Im�t

h
�0 � 1

!
�2

i

�0 = 1
cos Æ0

P
i yi RehQii0 (1�
�+�0)

�2 = 1
cos Æ2

P
i yi RehQii2

� =
�

2
+ Æ2 � Æ0 � �" = (0� 4)0
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Im�t ' � jVusjjVcbj2
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Thanks to F. Parodi, 1999

bBK = 1:0� 0:2: Im�t = (1:21� 0:12)� 10�4

Munich:bBK = 0:80� 0:15: Im�t = (1:33� 0:14)� 10�4
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Calculation of four-quark matrix elements

The ideal approach

A: Consistent de�nition of renormalized operators: cor-

rect scheme and scale matching with short-distance.

B: Self-contained calculation of all hadronic matrix el-

ements (including BK).

C: It reproduces simultaneously the �I = 1=2 selec-

tion rule and "0=" .
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VSA: h�+��jQ6jK0i = 2h��ju
5dj0ih�+jsujK0i
� 2h�+��jddj0ih0js
5djK0i
+ 2

�
h0jssj0i � h0jddj0i

�
h�+��js
5djK0i

Generalized Factorization: E�ective Wilson coeÆcients, matched

with factorized matrix elements at the scale �F (H-Y Cheng,

1999).

Phenomenological 1=N : Fix some of the matrix elements by

�tting the �I = 1=2 rule and vary others around the 1=N
values (M�unchen).

Chiral Quark Model: All matrix elements at O(p4) in terms of
hqqi, h�s

�
GGi, M, phenomenologically �xed via the �I = 1=2

rule (Trieste).

Phenomenological NJL: Chiral loops up to O(p6) and �t to

the �I = 1=2 rule. It includes scalar, vector and axial-vector

resonances (Dubna).

1/N: Chiral loops regularized via cuto�, partial O(p4) (Dort-
mund).

1/N and NJL: It includes scalar, vector and axial-vector reso-

nances, good scale stability (Bijnens and Prades, 1999-2000).

1/N and QCD Sum Rules: B̂K at the NLO in 1=N in the

chiral limit: consistent NLO matching (Peris and De Rafael,

2000).

Lattice: K ! � matrix elements of four-quark operators. Use

chiral symmetry to obtain K ! �� (Roma, RBC).

Linear �-model: m� = 500� 900 MeV: "0=" and A0 cannot be

reproduced simultaneously (Keum et al., Harada et al., Bloch

et al., 1999).
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Cut-o� people: beware of dimension eight operators!

hQ(6)
n iMS

� = hQ(6)
n icut�o�� +

X
i

dihQ(6)
i i� +

X
i

C(8)i hO(8)
i i

[Cirigliano, Donoghue and Golowich, 2000]

Isospin violation: �I = 5=2 transitions

�0 = � ip
2
ei(�2��0) !

ImA0

ReA0

h
1� 1

!

ImA2

ImA0

+ (�!5=2�
IB)
EM+STR

i
[STR: Gardner and Valencia; Ecker et al.; Maltman and Wolfe.

EM: Cirigliano, Donoghue and Golowich, 1999-2000]

Compute K ! �� directly on the lattice

In �nite volume a simple formula relates the transition

amplitude to the physical decay rate. It overcomes the

Maiani-Testa no-go theorem (1990).

[Lellouch and L�uscher, 2000]

Is �nal state dynamics accounted for in quenched calculations ?
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"
0
=": a (Penguin) Comparative Anatomy

jM�unchenjTriestej (�103)
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hQ1i2 : from �I = 1=2 rule

� hQ8i2 moderately smaller than VSA

� Largest deviations: hQ6i and hQ4i !
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jA0j=jA2j = 22:2

Anatomy of the �I = 1=2 rule in the �QM
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1! 4: Perturbative QCD and factorization

4! 5: Non-factorizable h�sGG=�i corrections (LO)

5! 7: Chiral loops and O(p4) counterterms

7! 8: Isospin breaking (� � � � �0)

Final state interactions alone are not enough to account

for the �I = 1=2 rule.
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Penguins and �I = 1=2 rule in the �QM

jO(p2)j+�loopsj+O(p4) c:t:j
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The Q6 contribution to A(K ! ��)I=0 (in GeV

�107) is about 20% of the total [O(p4=N)].

A2 is reduced to its experimental value by non-factorizable

hGGi corrections [O(p2=N)].

How does this information feed into the deter-

mination of the whole set of �S = 1 (and 2)

matrix elements ?
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Anatomy of "0=" in the �QM at O(p4)

jO(p2)j+�loopsj+O(p4) c:t:j
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At O(p2) the pattern of hadronic matrix elements does

not di�er much from leading order 1=N .

Chiral corrections enhance hQiI=0 = hQiI=2 : B6=B
(2)
8 � 2

(non-trivial consequence of the �I = 1=2 �t)

1=N approaches beyond LO (Dortmund group, Bijnens

and Prades) con�rm the hQ6i enhancement.

Role of NLO order chiral corrections and unquenching

in lattice calculations ?
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Conclusions

� I = 2 amplitudes: (semi-)phenomenological approaches which
�t the �I = 1=2 selection rule in K ! �� decays, generally
agree in the pattern and size of the �S = 1 hadronic matrix
elements with the existing 1=N and lattice calculations.

� I = 0 amplitudes: the �I = 1=2 rule forces upon us large
deviations from factorization: B�factors of O(10) for hQ1;2i0
(lattice calculations presently su�er from large sistematic un-
certainties).

� In the �QM calculation, non-factorizable contributions, \nor-
malized" by the �t of the CP conserving amplitudes, enhance
the I = 0 matrix elements and deplete the I = 2 amplitudes.

such that B6=B
(2)

8
� 2. Similar results from 1=N and disper-

sive approaches. FSI are most relevant for the enhancement
of the I = 0 components (gluonic penguins).

� Lattice: promising work in progress

{ Domain Wall Fermions (control of chiral symmetry),

{ Direct calculation of K ! �� in �nite volume.

� Theoretical error: further work needed on

{ the matching of long-distance and short-distance compo-
nents (cut-o� reg. ! higher dim. operators).

{ the calculation of NLO isospin violation e�ects (EM +
STR)

{ the determination of Im(V �

tsVtd).
From B-physics : B-factories and hadronic colliders (soon).
From K-physics : KL ! �0��� (eventually).

Experiments have stimulated very promising theoretical e�orts which
may lead us in a reasonably short time to address longstanding
problems of strong interacting QCD.
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