The width difference
of B_s-mesons

Ulrich Nierste
Fermilab

Work done in collaboration with
Martin Beneke, Gerhard Buchalla,
Christoph Greub and Alexander Lenz.
Outline

1. Heavy Quark Expansion
2. Lifetime differences
3. The width difference of B_S–mesons
4. Summary
1. Heavy Quark Expansion

Voloshin, Shifman; Bigi, Uraltsev, Vainshtein

Optical theorem for total decay rate Γ:

$$\Gamma \propto \text{Im} \langle B | i \int d^4x \, T \mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) | B \rangle$$

\mathcal{H}_{eff} is the effective $|\Delta B|=1$ hamiltonian.

HQE = Operator product expansion:

$$\Gamma \propto G_F^2 \sum_j m_b^{8-d_j} c_j (\mu/m_b) \langle B | \mathcal{O}_j(\mu) | B \rangle \mathcal{O} \left(\Lambda_{QCD}^{d_j-3} \right)$$

c_j: Wilson coefficients containing physics from scales $\geq \mu = \mathcal{O}(m_b)$

\mathcal{O}_j: local operators with dimension $d_j \geq 3$.

Effect: Expansion of Γ in Λ_{QCD}/m_b and $\alpha_s(m_b)$.
\[\Gamma (B \rightarrow all) = \Gamma (b \rightarrow all) + \mathcal{O} \left(\frac{\Lambda_{QCD}^2}{m_b^2} \right) \]

First term: QCD corrected parton model.

First corrections are \(\mathcal{O} \left(\frac{\Lambda_{QCD}^2}{m_b^2} \right) \) and come from Fermi motion of the b-quark and the chromomagnetic interaction with the light degrees of freedom.

Validity of HQE \(\leftrightarrow \) Quark-hadron duality
2. Lifetime differences

Dominant source of lifetime differences between \(B_d\), \(B_s\) and \(B^\pm\) mesons: Participation of the spectator quark in the weak decay. Effect of order \(\mathcal{O}\left(16\pi^2\frac{\Lambda^3_{QCD}}{m_b^3}\right)\)

(Except: \(\tau(B_s) - \tau(B_d)\) stems from \(SU(3)_F\) breaking in \(\mathcal{O}\left(\frac{\Lambda^2_{QCD}}{m_b^2}\right)\) matrix elements.)

\(B_d - B^\pm\) lifetime difference:

Bigi, Shifman, Uraltsev, Vainshtein
Neubert, Sachrajda
Lifetime difference of B_s mesons:

$$B_s \sim \bar{b}s \quad \bar{B}_s \sim b\bar{s}$$

Standard Model: Negligible CP-violation in B_s–$ar{B}_s$–mixing:

$$| B_{L,H} \rangle = \frac{1}{\sqrt{2}} \left[| B_s \rangle \mp | \bar{B}_s \rangle \right]$$

Width difference

$$\Delta \Gamma_{B_s} \equiv \Gamma_L - \Gamma_H$$

$$= -\frac{1}{M_{B_s}} \text{Im} \langle \bar{B}_s | i \int d^4 x \ T \mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0) | B_s \rangle$$

from final states common to B_S and \bar{B}_S

Measurement at Tevatron Run-II: Compare average B_s lifetime $\tau(B_s)$ measured in $B_s \rightarrow D_s^- \pi^+$ with $\tau(B_{s,L}) = 1/\Gamma_L$ measured in $B_s \rightarrow \psi\phi$ (CP-even component).
Compare:

\[\frac{\tau(B^+)}{\tau(B_d)}: \]
insensitive to new physics \(\Rightarrow\) tests HQE

\[\frac{\tau(B_s)}{\tau(B_d)} \simeq 1 \pm \mathcal{O}(1\%) \] (in Standard Model):
mildly sensitive to new physics in penguin coefficients

Keum, U.N.

\[\frac{\tau(B_{s,L})}{\tau(B_{s,H})}: \]
New CP-violating physics in \(B_S-\bar{B}_S\)-mixing can suppress \(\Delta \Gamma_{B_S}\) below its SM value.

Grossman
Why calculate lifetime differences to $\mathcal{O}(\alpha_s)$?

- to reduce the sizable μ-dependence
- consistent use of $\Lambda_{\overline{MS}}$
- meaningful use of lattice results for hadronic matrix elements like $\langle \bar{B}_s | \mathcal{O} | B_s \rangle$, $\langle \bar{B}_s | \mathcal{O}_S | B_s \rangle$
- QCD corrections are of order 30%.
- verify infrared safety of the c_j’s.
- Test of quark-hadron duality: Need to go beyond leading logarithmic approximation.
3. The width difference of B_S–mesons

Result:

$$\text{Im} \langle \bar{B}_s | i \int d^4 x \ T \mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) | B_s \rangle$$

$$= - \frac{G_F^2 m_b^2}{12 \pi} (V_{cb}^* V_{cs})^2 \left[F(z) \langle \bar{B}_s | Q | B_s \rangle + F_S(z) \langle \bar{B}_s | Q_S | B_s \rangle \right]$$

F and F_S are IR-safe functions of $z = m_c^2 / m_b^2$.

IR-singularities cancel via two mechanisms:

1. Bloch-Nordsieck cancellations among different cuts of the same diagram
2. Factorization of IR-singularities, which end up in

$$\langle \bar{B}_s | \mathcal{O} | B_s \rangle, \langle \bar{B}_s | \mathcal{O}_S | B_s \rangle$$
Nonperturbative QCD in

\[
\langle \bar{B}_s | Q | B_s \rangle = \frac{8}{3} f_{B_s}^2 M_{B_s}^2 B
\]

\[
\langle \bar{B}_s | Q_S | B_s \rangle = -\frac{5}{3} f_{B_s}^2 M_{B_s}^2 \frac{M_{B_s}^2}{(m_b + \bar{m}_s)^2} B_S
\]

Include corrections of order Λ_{QCD}/m_b:

\[
\left(\frac{\Delta \Gamma}{\Gamma} \right)_{B_s} = \left(\frac{f_{B_s}}{245 \text{ MeV}} \right)^2 [0.008 B + 0.204 B_S - 0.086]
\]

for the $\overline{\text{MS}}$-scheme at $\mu = m_b$.

Quenched lattice QCD:

\[
B(\mu = m_b) = 0.80 \pm 0.15 \quad \text{Hashimoto (Lattice '99)}
\]

\[
B_S(\mu = m_b) = 1.19 \pm 0.20 \quad \text{Yamada et al. (Hiroshima)}
\]

\[
\left(\frac{\Delta \Gamma}{\Gamma} \right)_{B_s} = \left(\frac{f_{B_s}}{245 \text{ MeV}} \right)^2 (0.162 \pm 0.041 \pm ??? \text{ (latt. syst.)})
\]
Summary

1. Need $\mathcal{O}(\alpha_s)$ corrections to test the HQE predictions for the lifetime differences of B mesons.

2. New CP-violation in B_s-mixing affects $\Delta \Gamma_{B_s}$.

3. Next-to-leading QCD-corrections to $\Delta \Gamma_{B_s}$ are infrared safe and reduce $\Delta \Gamma_{B_s}$ by 30%.
 $\Delta \Gamma_{B_s} / \Gamma_{B_s} = (16 \pm 7)\%$.